/* * Copyright 2018 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mgos.h" #include "mgos_mpu9250_internal.h" #include "mgos_i2c.h" // Datasheet: // // Private functions follow static bool mgos_mpu9250_ak8963_init(struct mgos_mpu9250 *imu, uint8_t i2caddr) { int device_id; if (!imu) { return false; } imu->i2caddr_ak8963 = i2caddr; device_id = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_WHO_AM_I); if (device_id != MGOS_MPU9250_DEVID_AK8963) { return false; } LOG(LL_INFO, ("Detected AK8963 at I2C 0x%02x", i2caddr)); mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00); mgos_usleep(10000); mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x0F); mgos_usleep(10000); uint8_t data[3]; if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_ASAX, 3, data)) { LOG(LL_ERROR, ("Could not read magnetometer adjustment registers")); return false; } imu->mag_adj[0] = (float)(data[0] - 128) / 256. + 1.; imu->mag_adj[1] = (float)(data[1] - 128) / 256. + 1.; imu->mag_adj[2] = (float)(data[2] - 128) / 256. + 1.; LOG(LL_DEBUG, ("magnetometer adjustment %.2f %.2f %.2f", imu->mag_adj[0], imu->mag_adj[1], imu->mag_adj[2])); mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00); mgos_usleep(10000); // Set magnetometer data resolution and sample ODR mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x16); mgos_usleep(10000); return true; } // Private functions end // Public functions follow struct mgos_mpu9250 *mgos_mpu9250_create(struct mgos_i2c *i2c, uint8_t i2caddr) { struct mgos_mpu9250 *imu; int device_id; if (!i2c) { return NULL; } imu = calloc(1, sizeof(struct mgos_mpu9250)); if (!imu) { return NULL; } imu->i2caddr = i2caddr; imu->i2c = i2c; device_id = mgos_i2c_read_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_WHO_AM_I); switch (device_id) { case MGOS_MPU9250_DEVID_9250: LOG(LL_INFO, ("Detected MPU9250 at I2C 0x%02x", i2caddr)); break; case MGOS_MPU9250_DEVID_9255: LOG(LL_INFO, ("Detected MPU9255 at I2C 0x%02x", i2caddr)); break; default: LOG(LL_ERROR, ("Failed to detect MPU9250 at I2C 0x%02x (device_id=0x%02x)", i2caddr, device_id)); free(imu); return NULL; } // Reset mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_PWR_MGMT_1, 0x80); mgos_usleep(100000); // Enable imus mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_PWR_MGMT_2, 0x00); // Magnetometer enable mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_INT_PIN_CFG, 0x02); // TODO(pim): is the mag always on 0x0C ? if (false == (imu->mag_enabled = mgos_mpu9250_ak8963_init(imu, MGOS_AK8963_DEFAULT_I2CADDR))) { LOG(LL_ERROR, ("Could not detect/initialize AK8963 magnetometer, disabling")); } return imu; } void mgos_mpu9250_destroy(struct mgos_mpu9250 **imu) { if (!*imu) { return; } free(*imu); *imu = NULL; return; } bool mgos_mpu9250_set_accelerometer_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_accelerometer_range range) { int val; if (!imu) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG)) < 0) { return false; } val &= 0xE7; // 11100111 val |= range << 3; return mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG, val); } bool mgos_mpu9250_get_accelerometer_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_accelerometer_range *range) { int val; if (!imu) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG)) < 0) { return false; } val &= 0x18; // 00011000 val >>= 3; *range = val; return true; } bool mgos_mpu9250_get_accelerometer(struct mgos_mpu9250 *imu, float *x, float *y, float *z) { uint8_t data[6]; int16_t ax, ay, az; enum mgos_mpu9250_accelerometer_range acc_range; uint16_t divider; if (!imu) { return false; } if (!mgos_mpu9250_get_accelerometer_range(imu, &acc_range)) { return false; } if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_XOUT_H, 6, data)) { return false; } ax = (data[0] << 8) | (data[1]); ay = (data[2] << 8) | (data[3]); az = (data[4] << 8) | (data[5]); // LOG(LL_DEBUG, ("ax=%d ay=%d az=%d", ax, ay, az)); switch (acc_range) { case RANGE_16G: divider = 2048; break; case RANGE_8G: divider = 4096; break; case RANGE_4G: divider = 8192; break; case RANGE_2G: divider = 16384; break; default: return false; } *x = (float)ax / divider; *y = (float)ay / divider; *z = (float)az / divider; return true; } bool mgos_mpu9250_set_gyroscope_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_gyroscope_range range) { int val; if (!imu) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG)) < 0) { return false; } val &= 0xE7; // 11100111 val |= range << 3; return mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG, val); } bool mgos_mpu9250_get_gyroscope_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_gyroscope_range *range) { int val; if (!imu) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG)) < 0) { return false; } val &= 0x18; // 00011000 val >>= 3; *range = val; return true; } bool mgos_mpu9250_get_gyroscope(struct mgos_mpu9250 *imu, float *x, float *y, float *z) { uint8_t data[6]; int16_t gx, gy, gz; enum mgos_mpu9250_gyroscope_range gyr_range; float divider; if (!imu) { return false; } if (!mgos_mpu9250_get_gyroscope_range(imu, &gyr_range)) { return false; } if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_XOUT_H, 6, data)) { return false; } gx = (data[0] << 8) | (data[1]); gy = (data[2] << 8) | (data[3]); gz = (data[4] << 8) | (data[5]); // LOG(LL_DEBUG, ("gx=%d gy=%d gz=%d", gx, gy, gz)); switch (gyr_range) { case RANGE_GYRO_2000: divider = 16.4; break; case RANGE_GYRO_1000: divider = 32.8; break; case RANGE_GYRO_500: divider = 65.5; break; case RANGE_GYRO_250: divider = 131.0; break; default: return false; } *x = (float)gx / divider; *y = (float)gy / divider; *z = (float)gz / divider; return true; } bool mgos_mpu9250_set_magnetometer_scale(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_scale scale) { int val; if (!imu || !imu->mag_enabled) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL)) < 0) { return false; } val &= 0x06; mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00); mgos_usleep(10000); mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, (scale << 4) | val); mgos_usleep(10000); return true; } bool mgos_mpu9250_get_magnetometer_scale(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_scale *scale) { int val; if (!imu || !imu->mag_enabled) { return false; } if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL)) < 0) { return false; } *scale = (val >> 4) & 0x01; return true; } bool mgos_mpu9250_set_magnetometer_speed(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_speed speed) { if (!imu || !imu->mag_enabled) { return false; } return false; } bool mgos_mpu9250_get_magnetometer_speed(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_speed *speed) { if (!imu || !imu->mag_enabled) { return false; } return false; } bool mgos_mpu9250_get_magnetometer(struct mgos_mpu9250 *imu, float *x, float *y, float *z) { uint8_t data[7]; int16_t mx, my, mz; enum mgos_mpu9250_magnetometer_scale mag_scale; float divider; if (!imu || !imu->mag_enabled) { return false; } if (!mgos_mpu9250_get_magnetometer_scale(imu, &mag_scale)) { return false; } if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_XOUT_L, 7, data)) { return false; } if (data[6] & 0x08) { return false; } mx = (data[1] << 8) | (data[0]); my = (data[3] << 8) | (data[2]); mz = (data[5] << 8) | (data[4]); // LOG(LL_DEBUG, ("mx=%d my=%d mz=%d", mx, my, mz)); switch (mag_scale) { case SCALE_14_BITS: divider = 8190.0; break; case SCALE_16_BITS: divider = 32760.0; break; default: return false; } *x = (float)mx * 4912.0 * imu->mag_adj[0] / divider; *y = (float)my * 4912.0 * imu->mag_adj[1] / divider; *z = (float)mz * 4912.0 * imu->mag_adj[2] / divider; return true; } bool mgos_mpu9250_i2c_init(void) { return true; } // Public functions end