Initial commit

This commit is contained in:
Pim van Pelt
2017-11-25 01:14:04 +01:00
parent d109bf9572
commit 4f64ed554a
34 changed files with 9873 additions and 0 deletions

201
libs/lobo-spi/LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

3
libs/lobo-spi/README.md Normal file
View File

@ -0,0 +1,3 @@
# mos-lobo-spi-lib
SPI lib for mongoose-os based on https://github.com/loboris/ESP32_TFT_library

361
libs/lobo-spi/include/lobo_spi.h Executable file
View File

@ -0,0 +1,361 @@
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_SPI_MASTER_LOBO_H_
#define _DRIVER_SPI_MASTER_LOBO_H_
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "soc/spi_struct.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "rom/lldesc.h"
#ifdef __cplusplus
extern "C"
{
#endif
//Maximum amount of bytes that can be put in one DMA descriptor
#define SPI_MAX_DMA_LEN (4096-4)
/**
* @brief Enum with the three SPI peripherals that are software-accessible in it
*/
typedef enum {
SPI_HOST=0, ///< SPI1, SPI; Cannot be used in this driver!
HSPI_HOST=1, ///< SPI2, HSPI
VSPI_HOST=2 ///< SPI3, VSPI
} spi_lobo_host_device_t;
/**
* @brief This is a configuration structure for a SPI bus.
*
* You can use this structure to specify the GPIO pins of the bus. Normally, the driver will use the
* GPIO matrix to route the signals. An exception is made when all signals either can be routed through
* the IO_MUX or are -1. In that case, the IO_MUX is used, allowing for >40MHz speeds.
*/
typedef struct {
int mosi_io_num; ///< GPIO pin for Master Out Slave In (=spi_d) signal, or -1 if not used.
int miso_io_num; ///< GPIO pin for Master In Slave Out (=spi_q) signal, or -1 if not used.
int sclk_io_num; ///< GPIO pin for Spi CLocK signal, or -1 if not used.
int quadwp_io_num; ///< GPIO pin for WP (Write Protect) signal which is used as D2 in 4-bit communication modes, or -1 if not used.
int quadhd_io_num; ///< GPIO pin for HD (HolD) signal which is used as D3 in 4-bit communication modes, or -1 if not used.
int max_transfer_sz; ///< Maximum transfer size, in bytes. Defaults to 4094 if 0.
} spi_lobo_bus_config_t;
#define SPI_DEVICE_TXBIT_LSBFIRST (1<<0) ///< Transmit command/address/data LSB first instead of the default MSB first
#define SPI_DEVICE_RXBIT_LSBFIRST (1<<1) ///< Receive data LSB first instead of the default MSB first
#define SPI_DEVICE_BIT_LSBFIRST (SPI_TXBIT_LSBFIRST|SPI_RXBIT_LSBFIRST); ///< Transmit and receive LSB first
#define SPI_DEVICE_3WIRE (1<<2) ///< Use spiq for both sending and receiving data
#define SPI_DEVICE_POSITIVE_CS (1<<3) ///< Make CS positive during a transaction instead of negative
#define SPI_DEVICE_HALFDUPLEX (1<<4) ///< Transmit data before receiving it, instead of simultaneously
#define SPI_DEVICE_CLK_AS_CS (1<<5) ///< Output clock on CS line if CS is active
#define SPI_ERR_OTHER_CONFIG 7001
typedef struct spi_lobo_transaction_t spi_lobo_transaction_t;
typedef void(*transaction_cb_t)(spi_lobo_transaction_t *trans);
/**
* @brief This is a configuration for a SPI slave device that is connected to one of the SPI buses.
*/
typedef struct {
uint8_t command_bits; ///< Amount of bits in command phase (0-16)
uint8_t address_bits; ///< Amount of bits in address phase (0-64)
uint8_t dummy_bits; ///< Amount of dummy bits to insert between address and data phase
uint8_t mode; ///< SPI mode (0-3)
uint8_t duty_cycle_pos; ///< Duty cycle of positive clock, in 1/256th increments (128 = 50%/50% duty). Setting this to 0 (=not setting it) is equivalent to setting this to 128.
uint8_t cs_ena_pretrans; ///< Amount of SPI bit-cycles the cs should be activated before the transmission (0-16). This only works on half-duplex transactions.
uint8_t cs_ena_posttrans; ///< Amount of SPI bit-cycles the cs should stay active after the transmission (0-16)
int clock_speed_hz; ///< Clock speed, in Hz
int spics_io_num; ///< CS GPIO pin for this device, handled by hardware; set to -1 if not used
int spics_ext_io_num; ///< CS GPIO pin for this device, handled by software (spi_lobo_device_select/spi_lobo_device_deselect); only used if spics_io_num=-1
uint32_t flags; ///< Bitwise OR of SPI_DEVICE_* flags
transaction_cb_t pre_cb; ///< Callback to be called before a transmission is started. This callback from 'spi_lobo_transfer_data' function.
transaction_cb_t post_cb; ///< Callback to be called after a transmission has completed. This callback from 'spi_lobo_transfer_data' function.
uint8_t selected; ///< **INTERNAL** 1 if the device's CS pin is active
} spi_lobo_device_interface_config_t;
#define SPI_TRANS_MODE_DIO (1<<0) ///< Transmit/receive data in 2-bit mode
#define SPI_TRANS_MODE_QIO (1<<1) ///< Transmit/receive data in 4-bit mode
#define SPI_TRANS_MODE_DIOQIO_ADDR (1<<2) ///< Also transmit address in mode selected by SPI_MODE_DIO/SPI_MODE_QIO
#define SPI_TRANS_USE_RXDATA (1<<3) ///< Receive into rx_data member of spi_lobo_transaction_t instead into memory at rx_buffer.
#define SPI_TRANS_USE_TXDATA (1<<4) ///< Transmit tx_data member of spi_lobo_transaction_t instead of data at tx_buffer. Do not set tx_buffer when using this.
/**
* This structure describes one SPI transmission
*/
struct spi_lobo_transaction_t {
uint32_t flags; ///< Bitwise OR of SPI_TRANS_* flags
uint16_t command; ///< Command data. Specific length was given when device was added to the bus.
uint64_t address; ///< Address. Specific length was given when device was added to the bus.
size_t length; ///< Total data length to be transmitted to the device, in bits; if 0, no data is transmitted
size_t rxlength; ///< Total data length to be received from the device, in bits; if 0, no data is received
void *user; ///< User-defined variable. Can be used to store eg transaction ID or data to be used by pre_cb and/or post_cb callbacks.
union {
const void *tx_buffer; ///< Pointer to transmit buffer, or NULL for no MOSI phase
uint8_t tx_data[4]; ///< If SPI_USE_TXDATA is set, data set here is sent directly from this variable.
};
union {
void *rx_buffer; ///< Pointer to receive buffer, or NULL for no MISO phase
uint8_t rx_data[4]; ///< If SPI_USE_RXDATA is set, data is received directly to this variable
};
};
#define NO_CS 3 // Number of CS pins per SPI host
#define NO_DEV 6 // Number of spi devices per SPI host; more than 3 devices can be attached to the same bus if using software CS's
#define SPI_SEMAPHORE_WAIT 2000 // Time in ms to wait for SPI mutex
typedef struct spi_lobo_device_t spi_lobo_device_t;
typedef struct {
spi_lobo_device_t *device[NO_DEV];
intr_handle_t intr;
spi_dev_t *hw;
//spi_lobo_transaction_t *cur_trans;
int cur_device;
lldesc_t *dmadesc_tx;
lldesc_t *dmadesc_rx;
bool no_gpio_matrix;
int dma_chan;
int max_transfer_sz;
QueueHandle_t spi_lobo_bus_mutex;
spi_lobo_bus_config_t cur_bus_config;
} spi_lobo_host_t;
struct spi_lobo_device_t {
spi_lobo_device_interface_config_t cfg;
spi_lobo_host_t *host;
spi_lobo_bus_config_t bus_config;
spi_lobo_host_device_t host_dev;
};
typedef spi_lobo_device_t* spi_lobo_device_handle_t; ///< Handle for a device on a SPI bus
typedef spi_lobo_host_t* spi_lobo_host_handle_t;
typedef spi_lobo_device_interface_config_t* spi_lobo_device_interface_config_handle_t;
/**
* @brief MGOS lib init
*/
bool mgos_mos_lobo_spi_init(void);
/**
* @brief Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
* up the CS pin to whatever is specified.
*
* This initializes the internal structures for a device, plus allocates a CS pin on the indicated SPI master
* peripheral and routes it to the indicated GPIO. All SPI master devices have three hw CS pins and can thus control
* up to three devices. Software handled CS pin can also be used for additional devices on the same SPI bus.
*
* ### If selected SPI host device bus is not yet initialized, it is initialized first with 'bus_config' function ###
*
* @note While in general, speeds up to 80MHz on the dedicated SPI pins and 40MHz on GPIO-matrix-routed pins are
* supported, full-duplex transfers routed over the GPIO matrix only support speeds up to 26MHz.
*
* @param host SPI peripheral to allocate device on (HSPI or VSPI)
* @param dev_config SPI interface protocol config for the device
* @param bus_config Pointer to a spi_lobo_bus_config_t struct specifying how the host device bus should be initialized
* @param handle Pointer to variable to hold the device handle
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_ERR_NOT_FOUND if host doesn't have any free CS slots
* - ESP_ERR_NO_MEM if out of memory
* - ESP_OK on success
*/
esp_err_t spi_lobo_bus_add_device(spi_lobo_host_device_t host, spi_lobo_bus_config_t *bus_config, spi_lobo_device_interface_config_t *dev_config, spi_lobo_device_handle_t *handle);
/**
* @brief Remove a device from the SPI bus. If after removal no other device is attached to the spi bus device, it is freed.
*
* @param handle Device handle to free
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_ERR_INVALID_STATE if device already is freed
* - ESP_OK on success
*/
esp_err_t spi_lobo_bus_remove_device(spi_lobo_device_handle_t handle);
/**
* @brief Return the actuall SPI bus speed for the spi device in Hz
*
* Some frequencies cannot be set, for example 30000000 will actually set SPI clock to 26666666 Hz
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
*
* @return
* - actuall SPI clock
*/
uint32_t spi_lobo_get_speed(spi_lobo_device_handle_t handle);
/**
* @brief Set the new clock speed for the device, return the actuall SPI bus speed set, in Hz
* This function can be used after the device is initialized
*
* Some frequencies cannot be set, for example 30000000 will actually set SPI clock to 26666666 Hz
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
* @param speed New device spi clock to be set in Hz
*
* @return
* - actuall SPI clock
* - 0 if speed cannot be set
*/
uint32_t spi_lobo_set_speed(spi_lobo_device_handle_t handle, uint32_t speed);
/**
* @brief Select spi device for transmission
*
* It configures spi bus with selected spi device parameters if previously selected device was different than the current
* If device's spics_io_num=-1 and spics_ext_io_num > 0 'spics_ext_io_num' pin is set to active state (low)
*
* spi bus device's semaphore is taken before selecting the device
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
* @param force configure spi bus even if the previous device was the same
*
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spi_lobo_device_select(spi_lobo_device_handle_t handle, int force);
/**
* @brief De-select spi device
*
* If device's spics_io_num=-1 and spics_ext_io_num > 0 'spics_ext_io_num' pin is set to inactive state (high)
*
* spi bus device's semaphore is given after selecting the device
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
*
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spi_lobo_device_deselect(spi_lobo_device_handle_t handle);
/**
* @brief Check if spi bus uses native spi pins
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
*
* @return
* - true if native spi pins are used
* - false if spi pins are routed through gpio matrix
*/
bool spi_lobo_uses_native_pins(spi_lobo_device_handle_t handle);
/**
* @brief Get spi bus native spi pins
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
*
* @return
* places spi bus native pins in provided pointers
*/
void spi_lobo_get_native_pins(int host, int *sdi, int *sdo, int *sck);
/**
* @brief Transimit and receive data to/from spi device based on transaction data
*
* TRANSMIT 8-bit data to spi device from 'trans->tx_buffer' or 'trans->tx_data' (trans->lenght/8 bytes)
* and RECEIVE data to 'trans->rx_buffer' or 'trans->rx_data' (trans->rx_length/8 bytes)
* Lengths must be 8-bit multiples!
* If trans->rx_buffer is NULL or trans->rx_length is 0, only transmits data
* If trans->tx_buffer is NULL or trans->length is 0, only receives data
* If the device is in duplex mode (SPI_DEVICE_HALFDUPLEX flag NOT set), data are transmitted and received simultaneously.
* If the device is in half duplex mode (SPI_DEVICE_HALFDUPLEX flag IS set), data are received after transmission
* 'address', 'command' and 'dummy bits' are transmitted before data phase IF set in device's configuration
* and IF 'trans->length' and 'trans->rx_length' are NOT both 0
* If device was not previously selected, it will be selected before transmission and deselected after transmission.
*
* @param handle Device handle obtained using spi_lobo_bus_add_device
*
* @param trans Pointer to variable containing the description of the transaction that is executed
*
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP error code if device cannot be selected
* - ESP_OK on success
*
*/
esp_err_t spi_lobo_transfer_data(spi_lobo_device_handle_t handle, spi_lobo_transaction_t *trans);
/*
* SPI transactions uses the semaphore (taken in select function) to protect the transfer
*/
esp_err_t spi_lobo_device_TakeSemaphore(spi_lobo_device_handle_t handle);
void spi_lobo_device_GiveSemaphore(spi_lobo_device_handle_t handle);
/**
* @brief Setup a DMA link chain
*
* This routine will set up a chain of linked DMA descriptors in the array pointed to by
* ``dmadesc``. Enough DMA descriptors will be used to fit the buffer of ``len`` bytes in, and the
* descriptors will point to the corresponding positions in ``buffer`` and linked together. The
* end result is that feeding ``dmadesc[0]`` into DMA hardware results in the entirety ``len`` bytes
* of ``data`` being read or written.
*
* @param dmadesc Pointer to array of DMA descriptors big enough to be able to convey ``len`` bytes
* @param len Length of buffer
* @param data Data buffer to use for DMA transfer
* @param isrx True if data is to be written into ``data``, false if it's to be read from ``data``.
*/
void spi_lobo_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx);
/**
* @brief Check if a DMA reset is requested but has not completed yet
*
* @return True when a DMA reset is requested but hasn't completed yet. False otherwise.
*/
bool spi_lobo_dmaworkaround_reset_in_progress();
/**
* @brief Mark a DMA channel as idle.
*
* A call to this function tells the workaround logic that this channel will
* not be affected by a global SPI DMA reset.
*/
void spi_lobo_dmaworkaround_idle(int dmachan);
/**
* @brief Mark a DMA channel as active.
*
* A call to this function tells the workaround logic that this channel will
* be affected by a global SPI DMA reset, and a reset like that should not be attempted.
*/
void spi_lobo_dmaworkaround_transfer_active(int dmachan);
#ifdef __cplusplus
}
#endif
#endif

24
libs/lobo-spi/mos.yml Executable file
View File

@ -0,0 +1,24 @@
author: Pim van Pelt <pim@ipng.nl>
type: lib
description: Mongoose-OS ESP32 SPI lib
version: 0.1
platforms: [ esp32 ]
sources:
- src
includes:
- include
config_schema:
- ["spi", "o", {title: "LoBo SPI settings"}]
- ["spi.mosi", "i", 18, {title: "LoBo SPI MOSI pin"}]
- ["spi.miso", "i", 19, {title: "LoBo SPI MISO pin"}]
- ["spi.sck", "i", 5, {title: "LoBo SPI SCK pin"}]
tags:
- c
- spi
- hw
manifest_version: 2017-09-29

1175
libs/lobo-spi/src/lobo_spi.c Executable file

File diff suppressed because it is too large Load Diff