Files
mgos_i2c_mock/src/mgos_mpu9250.c
2018-04-19 17:52:06 +02:00

355 lines
9.2 KiB
C

/*
* Copyright 2018 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mgos.h"
#include "mgos_mpu9250_internal.h"
#include "mgos_i2c.h"
// Datasheet:
//
// Private functions follow
static bool mgos_mpu9250_ak8963_init(struct mgos_mpu9250 *imu, uint8_t i2caddr) {
int device_id;
if (!imu) {
return false;
}
imu->i2caddr_ak8963 = i2caddr;
device_id = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_WHO_AM_I);
if (device_id != MGOS_MPU9250_DEVID_AK8963) {
return false;
}
LOG(LL_INFO, ("Detected AK8963 at I2C 0x%02x", i2caddr));
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00);
mgos_usleep(10000);
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x0F);
mgos_usleep(10000);
uint8_t data[3];
if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_ASAX, 3, data)) {
LOG(LL_ERROR, ("Could not read magnetometer adjustment registers"));
return false;
}
imu->mag_adj[0] = (float)(data[0] - 128) / 256. + 1.;
imu->mag_adj[1] = (float)(data[1] - 128) / 256. + 1.;
imu->mag_adj[2] = (float)(data[2] - 128) / 256. + 1.;
LOG(LL_DEBUG, ("magnetometer adjustment %.2f %.2f %.2f", imu->mag_adj[0], imu->mag_adj[1], imu->mag_adj[2]));
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00);
mgos_usleep(10000);
// Set magnetometer data resolution and sample ODR
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x16);
mgos_usleep(10000);
return true;
}
// Private functions end
// Public functions follow
struct mgos_mpu9250 *mgos_mpu9250_create(struct mgos_i2c *i2c, uint8_t i2caddr) {
struct mgos_mpu9250 *imu;
int device_id;
if (!i2c) {
return NULL;
}
imu = calloc(1, sizeof(struct mgos_mpu9250));
if (!imu) {
return NULL;
}
imu->i2caddr = i2caddr;
imu->i2c = i2c;
device_id = mgos_i2c_read_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_WHO_AM_I);
switch (device_id) {
case MGOS_MPU9250_DEVID_9250:
LOG(LL_INFO, ("Detected MPU9250 at I2C 0x%02x", i2caddr));
break;
case MGOS_MPU9250_DEVID_9255:
LOG(LL_INFO, ("Detected MPU9255 at I2C 0x%02x", i2caddr));
break;
default:
LOG(LL_ERROR, ("Failed to detect MPU9250 at I2C 0x%02x (device_id=0x%02x)", i2caddr, device_id));
free(imu);
return NULL;
}
// Reset
mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_PWR_MGMT_1, 0x80);
mgos_usleep(100000);
// Enable imus
mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_PWR_MGMT_2, 0x00);
// Magnetometer enable
mgos_i2c_write_reg_b(i2c, i2caddr, MGOS_MPU9250_REG_INT_PIN_CFG, 0x02);
// TODO(pim): is the mag always on 0x0C ?
if (false == (imu->mag_enabled = mgos_mpu9250_ak8963_init(imu, MGOS_AK8963_DEFAULT_I2CADDR))) {
LOG(LL_ERROR, ("Could not detect/initialize AK8963 magnetometer, disabling"));
}
return imu;
}
void mgos_mpu9250_destroy(struct mgos_mpu9250 **imu) {
if (!*imu) {
return;
}
free(*imu);
*imu = NULL;
return;
}
bool mgos_mpu9250_set_accelerometer_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_accelerometer_range range) {
int val;
if (!imu) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG)) < 0) {
return false;
}
val &= 0xE7; // 11100111
val |= range << 3;
return mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG, val);
}
bool mgos_mpu9250_get_accelerometer_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_accelerometer_range *range) {
int val;
if (!imu) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_CONFIG)) < 0) {
return false;
}
val &= 0x18; // 00011000
val >>= 3;
*range = val;
return true;
}
bool mgos_mpu9250_get_accelerometer(struct mgos_mpu9250 *imu, float *x, float *y, float *z) {
uint8_t data[6];
int16_t ax, ay, az;
enum mgos_mpu9250_accelerometer_range acc_range;
uint16_t divider;
if (!imu) {
return false;
}
if (!mgos_mpu9250_get_accelerometer_range(imu, &acc_range)) {
return false;
}
if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_ACCEL_XOUT_H, 6, data)) {
return false;
}
ax = (data[0] << 8) | (data[1]);
ay = (data[2] << 8) | (data[3]);
az = (data[4] << 8) | (data[5]);
// LOG(LL_DEBUG, ("ax=%d ay=%d az=%d", ax, ay, az));
switch (acc_range) {
case RANGE_16G: divider = 2048; break;
case RANGE_8G: divider = 4096; break;
case RANGE_4G: divider = 8192; break;
case RANGE_2G: divider = 16384; break;
default: return false;
}
*x = (float)ax / divider;
*y = (float)ay / divider;
*z = (float)az / divider;
return true;
}
bool mgos_mpu9250_set_gyroscope_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_gyroscope_range range) {
int val;
if (!imu) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG)) < 0) {
return false;
}
val &= 0xE7; // 11100111
val |= range << 3;
return mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG, val);
}
bool mgos_mpu9250_get_gyroscope_range(struct mgos_mpu9250 *imu, enum mgos_mpu9250_gyroscope_range *range) {
int val;
if (!imu) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_CONFIG)) < 0) {
return false;
}
val &= 0x18; // 00011000
val >>= 3;
*range = val;
return true;
}
bool mgos_mpu9250_get_gyroscope(struct mgos_mpu9250 *imu, float *x, float *y, float *z) {
uint8_t data[6];
int16_t gx, gy, gz;
enum mgos_mpu9250_gyroscope_range gyr_range;
float divider;
if (!imu) {
return false;
}
if (!mgos_mpu9250_get_gyroscope_range(imu, &gyr_range)) {
return false;
}
if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr, MGOS_MPU9250_REG_GYRO_XOUT_H, 6, data)) {
return false;
}
gx = (data[0] << 8) | (data[1]);
gy = (data[2] << 8) | (data[3]);
gz = (data[4] << 8) | (data[5]);
// LOG(LL_DEBUG, ("gx=%d gy=%d gz=%d", gx, gy, gz));
switch (gyr_range) {
case RANGE_GYRO_2000: divider = 16.4; break;
case RANGE_GYRO_1000: divider = 32.8; break;
case RANGE_GYRO_500: divider = 65.5; break;
case RANGE_GYRO_250: divider = 131.0; break;
default: return false;
}
*x = (float)gx / divider;
*y = (float)gy / divider;
*z = (float)gz / divider;
return true;
}
bool mgos_mpu9250_set_magnetometer_scale(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_scale scale) {
int val;
if (!imu || !imu->mag_enabled) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL)) < 0) {
return false;
}
val &= 0x06;
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, 0x00);
mgos_usleep(10000);
mgos_i2c_write_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL, (scale << 4) | val);
mgos_usleep(10000);
return true;
}
bool mgos_mpu9250_get_magnetometer_scale(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_scale *scale) {
int val;
if (!imu || !imu->mag_enabled) {
return false;
}
if ((val = mgos_i2c_read_reg_b(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_CNTL)) < 0) {
return false;
}
*scale = (val >> 4) & 0x01;
return true;
}
bool mgos_mpu9250_set_magnetometer_speed(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_speed speed) {
if (!imu || !imu->mag_enabled) {
return false;
}
return false;
}
bool mgos_mpu9250_get_magnetometer_speed(struct mgos_mpu9250 *imu, enum mgos_mpu9250_magnetometer_speed *speed) {
if (!imu || !imu->mag_enabled) {
return false;
}
return false;
}
bool mgos_mpu9250_get_magnetometer(struct mgos_mpu9250 *imu, float *x, float *y, float *z) {
uint8_t data[7];
int16_t mx, my, mz;
enum mgos_mpu9250_magnetometer_scale mag_scale;
float divider;
if (!imu || !imu->mag_enabled) {
return false;
}
if (!mgos_mpu9250_get_magnetometer_scale(imu, &mag_scale)) {
return false;
}
if (!mgos_i2c_read_reg_n(imu->i2c, imu->i2caddr_ak8963, MGOS_MPU9250_REG_AK8963_XOUT_L, 7, data)) {
return false;
}
if (data[6] & 0x08) {
return false;
}
mx = (data[1] << 8) | (data[0]);
my = (data[3] << 8) | (data[2]);
mz = (data[5] << 8) | (data[4]);
// LOG(LL_DEBUG, ("mx=%d my=%d mz=%d", mx, my, mz));
switch (mag_scale) {
case SCALE_14_BITS: divider = 8190.0; break;
case SCALE_16_BITS: divider = 32760.0; break;
default: return false;
}
*x = (float)mx * 4912.0 * imu->mag_adj[0] / divider;
*y = (float)my * 4912.0 * imu->mag_adj[1] / divider;
*z = (float)mz * 4912.0 * imu->mag_adj[2] / divider;
return true;
}
bool mgos_mpu9250_i2c_init(void) {
return true;
}
// Public functions end